The Effect of Lithium Doping on the Sintering and Grain Growth of SPS-Processed, Non-Stoichiometric Magnesium Aluminate Spinel

نویسندگان

  • Yuval Mordekovitz
  • Lee Shelly
  • Mahdi Halabi
  • Sergey Kalabukhov
  • Shmuel Hayun
چکیده

The effects of lithium doping on the sintering and grain growth of non-stoichiometric nano-sized magnesium aluminate spinel were studied using a spark plasma sintering (SPS) apparatus. Li-doped nano-MgO·nAl₂O₃ spinel (n = 1.06 and 1.21) powders containing 0, 0.20, 0.50 or 1.00 at. % Li were synthesized by the solution combustion method and dense specimens were processed using a SPS apparatus at 1200 °C and under an applied pressure of 150 MPa. The SPS-processed samples showed mutual dependency on the lithium concentration and the alumina-to-magnesia ratio. For example, the density and hardness values of near-stoichiometry samples (n = 1.06) showed an incline up to 0.51 at. % Li, while in the alumina rich samples (n = 1.21), these values remained constant up to 0.53 at. % Li. Studying grain growth revealed that in the Li-MgO·nAl₂O₃ system, grain growth is limited by Zener pining. The activation energies of undoped, 0.2 and 0.53 at. % Li-MgO·1.21Al₂O₃ samples were 288 ± 40, 670 ± 45 and 543 ± 40 kJ·mol-1, respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In-situ Fabrication of Transparent Magnesium Aluminate Spinel by Spark Plasma Sintering

Transparent polycrystalline spinel ceramic was fabricated without any sintering aids by spark plasma sintering method of a mixture of Al2O3 and MgO powders for only 10min soak at 1250°C. Densification, microstructure and optical transparency of spinel were examined. The spinel exhibits an in-line transmission of 55% for a visible-wavelength of 470nm and high hardness value of 2040 HV.

متن کامل

Creep of Polycrystalline Magnesium Aluminate Spinel Studied by an SPS Apparatus

A spark plasma sintering (SPS) apparatus was used for the first time as an analytical testing tool for studying creep in ceramics at elevated temperatures. Compression creep experiments on a fine-grained (250 nm) polycrystalline magnesium aluminate spinel were successfully performed in the 1100-1200 °C temperature range, under an applied stress of 120-200 MPa. It was found that the stress expon...

متن کامل

Comparison of Creep Behavior in Alumina Based Ceramics Densified by Spark Plasma Sintering and Hot Pressing

Spark plasma sintering (SPS) method, as plasma activated sintering, is a method applicable for rapid sintering of metals and ceramics. Owing to the advantage of rapid heating, the alumina ceramics obtained by SPS have a grain size and density comparable to those of hot pressed ones. The increase of densification rate may be related to some difference in ion transport characteristics. This study...

متن کامل

Fabrication of Nanostructured Cu matrix Nanocomposites by High Energy Mechanical Milling and Spark Plasma Sintering

Spark plasma sintering (SPS) is a sintering process that is capable of sintering hard worked powders in short times. This technique was used to fabricate bulk Cu and Cu-SiC nanocomposites. Pure Cu and mixed powders of Cu including 4 vol% of SiC nanoparticles were mechanically alloyed for 25 h and sintered at 750˚C under vacuum condition by SPS method. Microstructures of the materials were chara...

متن کامل

THE EFFECT OFCARBON NANOTUBES ON THE SINTERING BEHAVIOR OF ZIRCONIA BASED MATERIALS

Different volume fractions (1.3, 2.6, and 7.6 Vol.%) of carbon nanotubes (CNTs) were dispersed within 8Y-TZP nanopowders. Mixed powder specimens were subsequently processed by spark plasma sintering (SPS) and effects of CNTs on the sintering process of 8Y-TZP/CNT composites was studied. Maintenance of CNTs through the SPS process was confirmed using TEM and Raman Spectroscopy. Studies on the si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016